A Survey on Statistical Relational Learning
نویسندگان
چکیده
The vast majority of work in Machine Learning has focused on propositional data which is assumed to be identically and independently distributed, however, many real world datasets are relational and most real world applications are characterized by the presence of uncertainty and complex relational structure where the data distribution is neither identical nor independent. An emerging research area, Statistical Relational Learning(SRL), attempts to represent, model, and learn in relational domain. Currently, SRL is still at a primitive stage in Canada, which motivates us to conduct this survey as an attempt to raise more attention to this field. Our survey presents a brief introduction to SRL and a comparison with conventional learning approaches. In this survey we review four SRL models(PRMs, MLNs, RDNs, and BLPs) and compare them theoretically with respect to their representation, structure learning, parameter learning, and inference methods. We conclude with a discussion on limitations of current methods.
منابع مشابه
Statistical Relational Learning - A Logical Approach (Abstract of Invited Talk)
In this talk I will briefly outline and survey some developments in the field of statistical relation learning, especially focussing on logical approaches. Statistical relational learning is a novel research stream within artificial intelligence that combines principles of relational logic, learning and probabilistic models. This endeavor is similar in spirit to the developments in Neural Symbo...
متن کاملStatistical Relational Learning : Four Claims and a Survey
made significant progress over the last 5 years. We have successfully demonstrated the feasibility of a number of probabilistic models for rela-tional data, including probabilistic relational models, Bayesian logic programs, and relational probability trees, and the interest in SRL is growing. However, in order to sustain and nurture the growth of SRL as a subfield we need to refocus our effort...
متن کاملSocial networks and statistical relational learning: a survey
One of the most appreciated functionality of computers nowadays is their being a means for communication and information sharing among people. With the spread of the internet, several complex interactions have taken place among people, giving rise to huge information networks based on these interactions. Social networks potentially represent an invaluable source of information that can be explo...
متن کاملMulti-Relational Data Mining using Probabilistic Models Research Summary
We are often faced with the challenge of mining data represented in relational form. Unfortunately, most statistical learning methods work only with “flat” data representations. Thus, to apply these methods, we are forced to convert the data into a flat form, thereby not only losing its compact representation and structure but also potentially introducing statistical skew. These drawbacks sever...
متن کاملTransforming Graph Representations for Statistical Relational Learning
Relational data representations have become an increasingly important topic due to the recent proliferation of network datasets (e.g., social, biological, information networks) and a corresponding increase in the application of statistical relational learning (SRL) algorithms to these domains. In this article, we examine a range of representation issues for graph-based relational data. Since th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010